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Abstract. We study the distribution of attraction basins as a function of energy in simple glasses.
We find that it is always broad. Furthermore, we identify two types of glass, both with an
exponentially large number of metastable states. In one type the largest attraction basin is exp-
onentially small, whereas in the other it is polynomially small in the system size N . If there exists
a tuning parameter that connects one regime with another, then these two phases are separated by
a critical point. We discuss implications for optimization problems.

(Some figures in this article appear in colour in the electronic version; see www.iop.org)

1. Introduction

A complex system is one whose number of metastable configurations,Ns , scales exponentially
with the number of its elements,N . Naively one expects that an exponential number of searches
is required to find the optimal state. In general the identification of the ground state in a complex
system can be mapped onto a hard combinatorial optimization problem [1]. However, there
exist examples in nature, e.g. proteins [2–5], of complex systems that find their ground states
on timescales significantly faster than τ ∼ Ns . A possible explanation for this phenomenon is
that the associated total phase volume is not equally divided among the metastable states. More
specifically, if a significant fraction of the total phase volume belongs to the attraction basin of
the optimal state, then a fast process leading to this ‘greedy’ configuration becomes feasible
to implement. A less stringent possibility is that the optimal state can be located relatively
quickly if it is connected by a continuous path in the space of parameters to a state with a large
basin of attraction. This is the underlying approach in simulated annealing, an optimization
algorithm that is very effective for problems where the ground state evolves continuously
from the paramagnetic configuration as a function of decreasing temperature [6]. However
simulated annealing cannot be applied to systems where all the metastable states appear at the
same temperature [7,8]. In this case an open question is whether one can identify a parameter
that connects the state continuously to one with a large basin of attraction. We have addressed
this issue in a family of simple glasses characterized by a parameter x. In particular we find that
this parameter can be increased continuously such that there exists a small subset of metastable
states which attract the system with significant probability P such that
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in complex systems.
Here we study the basins of attraction in a family of p-spin spherical models [9]

characterized by the Hamiltonian

H = √
x

∑
i1i2

Ji1i2si1si2 +
√

1 − x
∑
i1i2i3

Ji1i2i3si1si2si3 (1)

where the constraint
∑N
i=1 s

2
i = 1 is satisfied by the N spins that are represented by real

variables si . Ji1i2 and Ji1i2i3 are two- and three-spin infinite-range couplings respectively;
furthermore they are completely random in sign and in amplitude, and are uncorrelated. In
this family of glasses, we find that the configurational entropy, Sc ≡ lnNs , remains extensive
(Sc ∝ N) for 0 � x < 1 whereas Sc = 0 for precisely x = 1. This limit corresponds to
the p = 2 disordered spherical model which has only one locally stable solution [10] and
therefore an associated basin of attraction that is large. The other extreme parameter limit
of (1), x = 0, corresponds to the three-spin spherical model with an extensive number of
metastable states [11, 12] whose attraction volumes are each an exponentially small fraction
of the full phase space [13]. As an aside, we note that here we will use the normalizations

〈J 2
i1i2

〉 = 1

8N
(2)

〈J 2
i1i2i3

〉 = 1

36N2
(3)

where the angular brackets refer to an average over disorder; these expressions, (2) and (3),
are slightly different than those commonly found in the literature but are convenient for this
family of mixed models.

The p-spin random spherical models (p > 2) are believed to be the simplest models
that possess the essential properties of a generic complex system [14]. Aside from having an
extensive complexity (Sc ∝ N ), they also exhibit history dependence and aging characteristic
of experimental glasses [15]. The simplicity of these models arises from the long-range
nature of the interactions, a feature that makes them accessible to direct analytic treatment;
second, all metastable states appear at some temperature and do not further bifurcate; third,
the most probable overlap between two states is zero in the thermodynamic limit [9, 16],
and furthermore all overlaps are bounded from below [17], a feature which simplifies the
dynamical equations for Ns → ∞. Naturally the evolution of a particular system with
specific couplings must be studied numerically. However, the physical properties of the system
averaged over all possible realizations of couplings can be studied analytically using a set of
integral–differential equations [18,19]. The latter describe the properties of typical metastable
states where stochastic processes will take the averaged system. Here we show that the solution
of these equations implies that for x = 0 (p = 3 spherical model) the distribution of attraction
basins as a function of energy is broad, though the attraction volume associated with the ground
state is still an exponentially small part of the full phase space [13]. This regime persists up
to finite xc ∼ 1

2 . However, we find that as we continuously tune x to x > xc the complexity
remains extensive (Sc ∝ N ) for xc < x < 1 but the ground state acquires a large basin of
attraction that far exceeds the average and is a significant fraction of the total phase volume.

We extract the distribution of attraction basins from the dynamical equations of the mixed
model (1) as a function of x. More specifically, we relate the size of an attraction basin
associated with a physical state to the critical overlap, q∗, between this state and a partially
randomized one that still evolves back to it. In particular, the limit q∗ → 0 corresponds to
a basin of attraction that occupies a significant portion of the available phase volume. The
critical overlap q∗ is found from the solutions of the dynamical equations of (1).



Distribution of attraction basins in a family of simple glasses 6643

The outline of this paper is as follows. In section 2 we discuss the general approach
taken here, in particular the determination of the critical overlap as a function of energy,
q∗(E). In section 3 we apply this approach to the pure p = 3 random spherical model and
study the attraction basins as a function of energy. Next we turn to the mixed model (1) and
determine the distribution of attraction basins for different values of x. We find a parameter
regime, 1 > x > xc, where the mixed model has a typical state with large trapping probability
((1/N) ln(1/P)� 1); furthermore in this regime the mixed model has marginally stable states.
In section 4 we summarize our results in a discussion, noting that this conclusion is based on a
study of dynamical equations that appear in a broad class of glassy models [20]; in particular
they also describe glassy systems without quenched disorder [21–24]. These equations have
also been proposed on phenomenological grounds for the description of freezing in structural
glasses; they are the so-called mode-coupling equations [25]. Thus we expect our result to be
more general than the specific mixed model defined above.

2. The approach

The key step in our approach is to extract the probability, P , with which the typical state
attracts the system from the dynamical equations of the p-spin model. This probability, P ,
is equal to the ratio of the attraction basin of the physical state, WB , and the full volume of
phase space, WPH , so P = WB/WPH . We take the typical state as a reference point and
parametrize arbitrary points in phase space by their respective angles to this configuration. In
this framework,

WPH = NN−2
∫ π

0
dθ sinN−2 θ (4)

where NN−2 is the volume of the (n − 2)-dimensional unit sphere. Similarly the volume of
the attraction basin of the reference state is

WB = NN−2
∫ π

0
dθ P (θ) sinN−2 θ (5)

whereP(θ) is the probability that the state at angle θ belongs to the basin of attraction associated
with the reference configuration.

We note that for N  1 the main contribution to WPH in (5) arises from sin θ ≡ 1,
whereas that of WB comes from the largest possible sin θ such that P(θ) is finite. Therefore
the behaviour of P(θ) for θ ∼ π/2 is crucial for this discussion. It is therefore convenient to
rewrite the expressions for WPH and WB using the parametrization q = cos θ where q is the
overlap between the typical state and that at angle θ . In this notation, assuming that N  1,
we find that

WPH = NN−2
∫ ∞

0
dq e−(N/2)q2

(6)

and

WB = NN−2
∫ ∞

0
dq P (q)e−(N/2)q2

(7)

where we note that the main contribution to WPH , displayed in (6), arises from small
q ∼ 1/

√
N . There are two possible scenarios:

(i) P(q) ≡ 0 for q < q∗ (where q∗ > 1/
√
N ). We note that this threshold coincides with the

previous definition of q∗, the critical overlap beyond which a partially randomized state
evolves away from the reference state. In this case

P = WB

WPH
∝ e−(N/2)(q∗)2 (8)
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and
1

N
ln

1

P ∼ 1. (9)

(ii) P(q) = f (q), so there is no threshold (i.e. q∗ → 0).

Then the probability that the reference state attracts the system is not exponentially small
and

1

N
ln

1

P � 1. (10)

Therefore the size of the attraction basin associated with the typical state is determined by the
value of the critical overlap q∗ ≡ cos θ∗. We expect q∗ to have a distribution of finite width;
in this case states with the smallest value of q∗ will have exponentially larger attraction basins
than the others. Furthermore, if q∗ → 0 then these states will have basins of attraction that
are a significant fraction of the full phase volume.

We now discuss how to extract P(q) and q∗ from the dynamical equations of the family of
p-spin spherical models. These equations determine the time evolution of averaged correlation
(Dtt ′ = 〈s(t)s(t ′)〉) and response (Gtt ′ = 〈

∂s(t)/∂h(t ′)
〉
) functions for arbitrary sample history.

In order to find P(q), we consider the evolution of a state where at time t0 a fraction 1 − q of
the total spins is randomized so that at time t0 +ε the system is in a random state corresponding
to overlap q with the state at t0. In terms ofDtt ′ andGtt ′ this randomization translates into the
boundary conditions

Dt0+ε,t ′ = (1 − q)Dt0t ′ (11)

Gt0+ε,t ′ = (1 − q)Gt0t ′ (12)

where t0 > t ′. The solution of the dynamical equations yields Q(q) ≡ limt→∞Dtt0−ε(q),
the average overlap between a typical state and that which has evolved from it in the manner
described above. This quantity can be interpreted in a simple way if all metastable states are
orthogonal; in this caseQ(q) is equal to P(q), the probability that the system evolves back to
its original configuration after a fraction (1 − q) of the spins have been randomized. This is
indeed the situation for the family of spherical spin models that we study here where there is
only one-step replica-symmetry breaking as in the pure p = 3 spherical model [9]; details of
the replica solution for the mixed models are presented in appendix A.

We note that Q(q) depends implicitly on the properties of the typical state at time t0.
The dynamical equations with random initial conditions yield Q(q) averaged over all typical
states. This average is dominated by the states for which the combined basin of attraction is
maximal; for instance if states are characterized by their energy, this quantity N(E)WB(E)
is usually largest for states with the highest energy which are still stable, namely states that
are marginally stable. In order to probe states with different energies, one needs to introduce
different initial conditions via source terms in the dynamical equations [26–29]. The solution
of these modified equations yields Q(q,E), the overlap averaged over typical states of fixed
energy E.

The dynamical equations for the family of spherical models with Hamiltonian (1) at t < t0
and at t > t0 have the form

ṡi = −!∂H(x)
∂si

+ ηi(t) 〈ηi(t)ηj (t ′)〉 = 2T !δij δ(t − t ′) (13)

which reduces to the set of equations

(at1 + ∂t1)Dt1t2 − 2Gt1t2 − β
2

2

∫
(t1tGtt2 dt − β

2

2

∫
)t1tDtt2 dt = SD (14)
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and

(at1 + ∂t1)Gt1t2 − β
2

2

∫
)t1tDtt2 dt = δ(t1 − t2) (15)

where β is the inverse temperature,) and( are self-energy terms, at is determined implicitly
by the condition Dtt = Gtt = 1, and SD is a source term that fixes the initial energy. For this
mixed model with N  1, we have

)t1t2 = 2(1 − x)(GD)t1t2 + xGt1t2 (16)

(t1t2 = (1 − x)D2
t1t2

+ xDt1t2 (17)

and

SD = 6βE0

2 + x
(D2
t10Dt20(1 − x) + xDt10Dt20) (18)

where E0 is the energy of the initial configuration at t = 0. In the two self-energies,
equations (16) and (17), we recover known results for thep = 2 andp = 3 spherical models for
x = 1 andx = 0 respectively [18,19]. The source term, equation (18), is derived by introducing
a term δ(H(t = 0)−E0) into the functional integral for the stochastic dynamics, representing
it as an additional integral over a Lagrangian multiplier where the latter is determined by the
initial energy E0. In order to obtain P(x, q,E), we solve this system of equations varying
these three parameters.

3. Results

In figure 1 we display the spin–spin correlation function, Dtt ′ , of the x = 0 (p = 3) spherical
model after a fast quench (i.e. with random initial conditions) as a reference starting point for
our subsequent discussion. Apart from a narrow range t ′ ≈ t , this correlation function obeys
a scaling [19] form Dtt ′ ∼ (t ′/t)γ .

2.5 5 7.5 10 12.5 15 17.5 20

0.2

0.4

0.6

0.8

1

t’

D
(t

,t’
)

Figure 1. The spin–spin correlation function after a fast quench at T = 1
4Tc for thep = 3 spherical

model. Note the fast relaxation at very short t − t ′ � 1.

In figure 2 we show the correlation function for the solution when the system was partially
randomized at t0 = t/2 as described in (11) and (12). As an aside, we note that here and in what
follows we present results for t/t0 = 2; we have checked that they are weakly dependent on this
ratio. As expected, increased randomization leads to a decreasing overlap between the state at
t0 and at t = 2t0. We also note that Dt1t2 shows power-law aging behaviour, Dt1t2 ≈ (t1/t2),
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Figure 2. The spin–spin correlation function for the p = 3 spherical model after a fast quench to
T = 1

8Tc followed by a randomization to t0 = 1
2 t with different fractions, (1 − q), of the total

number of spins affected. Dashed lines refer to the results for the total time t = 10 rescaled to those
for t = 20. These data indicate that 0.25 < q∗ < 0.30 since an increase in the total time t , keeping
the ratio t0/t fixed, leads to evolution in different directions ofQ(q) ≡ limt→∞Dtt0−ε(q).

for t1, t2 < t0; for t1, t2 > t0 the relaxation starts again and Dt1t2 = d((t2 − t0)/(t1 − t0)).
These curves were determined numerically for finite t0; as t0 → ∞ we expect the limiting
value of these overlaps to tend either to the self-overlap,Q0, or to zero slowly. For example, a
factor-of-two increase in the overall time changesDtt ′ a little bit as displayed in figure 2 by the
dashed and full curves. Therefore a systematic finite-time analysis is necessary to determine
the value of q∗. The dashed and full curves presented in figure 2 indicate that q∗ lies between
q1 and q2 because the plot for q1 decreases with increasing t0 whereas the opposite is true
for q2. We note that the slow decrease in Q(q1) with overall time can be understood as a
finite-time effect; more specifically, Q(q1) follows the same time evaluation as Dt0 for the
reference dynamics without randomization (see figure 1) such that

lnDt0+ε,t0

ln t
= lnDt,0

ln t
= −1

4
. (19)

In order to obtain q∗ more precisely, we consider the derivative dQ(q, t)/d ln t at finite t with
t0 always fixed at t0 = 1

2 t . We determine q∗ from the equation dQ(q, t)/d ln t = 0 where we
check that the value of q∗ obtained in this fashion is not dependent on the overall measuring
time. We note that the result, namely that q∗(E = 0) is finite for x = 0 (p = 3 spherical
model), is consistent with the conclusions of an earlier study of this model [13]. Furthermore
we have checked that this result is not sensitive to our specific choice of the ratio t0/t .

Until now, we have considered solutions to the dynamical equations, (14) and (15), with
random initial conditions; as we have discussed earlier, these probe high-energy states that are
marginally stable, a feature that is responsible for their power-law evolution. We now turn
to lower-energy states as shown in figure 3. In order to access them we must fix our initial
energy to be E0 < EC . In figure 4 we display typical spin–spin correlation functions in this
energy regime. The two upper curves indicate clearly that for sufficiently large q the system
recovers its state at t0. For smaller q the state at t0 + ε evolves away from its reference state
(see figure 4) in a manner similar to that for Dtt ′ with completely random initial conditions
(see figure 1). Despite this qualitatively different behaviour for large and small q, q∗ must be
determined by the same finite-time scaling as was discussed earlier. Such an analysis indicates
that q∗(x = 0, E) remains finite for all energies. Therefore the basins of attraction in the
p = 3 spherical model increase with decreasing energy, but always remain exponentially
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0.25 0.5 0.75 1 1.25 1.5 1.75 2

-0.8

-0.6

-0.4

-0.2

0

t

E
(t

)

Figure 3. The energy dependence of the dynamical solutions for the p = 3 spherical model with
different initial energies. Note that for all initial energies E(0) > −0.4 the energy approaches
its asymptotic value (E(∞) = −0.61, indicated by the dashed line) with power-law decay; by
contrast for E0 < −0.4 the energy behaviour is exponential and E(∞) depends on E(0). Note
also that the exponential relaxation time τ0 ∼ 0.1 in our units.

2.5 5 7.5 10 12.5 15 17.5 20

0.2

0.4

0.6

0.8

1
q=0.25

q=0.20

t’

D
(t

,t’
)

Figure 4. The spin–spin correlation function for the p = 3 model with E(0) = −0.6
(corresponding to exponential relaxation) with T = 1

8Tc with randomization at t0 = 1
2 t . Note

that for q = 0.25 the randomization is followed by very fast relaxation back to the initial state.
By contrast, a slightly larger randomization q = 0.20 (corresponding to the randomization of
(1 − q) = 0.80 of the total spins) leads to a completely different states similar to that found after
a fast quench. We comment that t = 20 corresponds to t/τ0 ≈ 200.

small compared with the full phase volume [13].
In weakly frustrated systems where the number of metastable states is subexponential,

some basins of attraction must be large. An example of such a system is the p = 2 spherical
model [10]. An interesting question is that of whether it is possible to have some large basins
of attraction but an exponential total number of states. We expect an exponential number of
states in a mixed p = 2 and p = 3 spherical model, and therefore study a family of such
systems to see whether they ever acquire typical states with large basins of attraction.

We have checked that there is one-step replica-symmetry breaking for 0 � x � 1, and
details are presented in appendix B. As a result, we know that all metastable states appear
at T = Tc and that there is no further subdivision of states at lower temperatures. We can
therefore perform an enumeration of these configurations at T = 0. We have verified by direct
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computation that the logarithm of the number of states for this mixed model is

SC ≡ ln N (x) = N

2

(
2 + ln(2 − x)− 24(2 − x)

(x + 2)(3 − x)2
)

(20)

which is zero only at x = 1 (p = 2) where x is a mixing parameter as defined in the Hamil-
tonian (1). Details of the calculation that yields (20) are given in appendix B.

We repeated the numerical analysis outlined above for values of x such that 0 < x < 1.
Our results for q∗ are summarized in figure 5. As shown there, for x = 0.3 all basins of
attraction remain exponentially smaller than the full phase volume. However, for x = 0.6, the
critical overlap q∗(E) is zero atE0 indicating that states of energyE0 have basins of attraction
that occupy a significant fraction of the full phase volume.

-0.74 -0.72 -0.7 -0.68 -0.66

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

E

q*

Ec

EcX=0.60

X=0.33X=0.33

Figure 5. The critical overlap, q∗, as a function of initial energy,E = E(0), for x = 0.33 (x < xc)
and x = 0.60 (x > xc). We note that in the latter case q∗(E) crosses the x-axis, indicating the
appearance of a state with a large attraction volume.

Now we discuss possible weak points in this argument. We have assumed the exact
orthogonality of the metastable states which is only true to order 1/

√
N . This might lead to

q∗ ∼ 1/
√
N instead of q∗ = 0 for the states with large attraction basins. This correction would

result in P ∼ N−α with α of order unity. Another weak point in the argument might be the
effect of finite-size corrections to the equations (11)–(17) which were originally derived in the
thermodynamic limit. For the p = 3 spherical model we have derived the subleading terms in
1/N which modify the expressions for the self-energies ) and(, included them in equations
(14) and (15), and have checked that their effects are perturbative. Furthermore, because the
self-energy scales as D3, higher-order terms in 1/N , e.g. terms O(1/N3), cannot change the
solution of equations (14) and (15) for D > 1/N2/3 and thus cannot lead to q∗ > 1/

√
N .

Therefore in the mixed p-spin models we expect higher-order terms in 1/N to only lead to
power-law corrections in P , and thus to not qualitatively affect our results for (1/N) ln(1/P).
Naturally there are also non-perturbative effects, but their contributions would not change the
qualitative nature of our results.

4. Discussion

We have studied the attraction volume of a typical state of energy E in a family of disordered
spherical spin models which interpolate between p = 3 (extensive configurational entropy)
and p = 2 (one stable solution) as a function of a tuning parameter x. For 0 � x < 1 the
total number of metastable states is exponential inN . We find that for small x (i.e. close to the
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p = 3 model) the largest attraction basin is an exponentially small fraction of the full phase
volume; this is true despite the fact that it is a strongly varying function of energy. We also
find that for x > xc ∼ 0.5 (more precisely, we could only bracket it by 0.3 < xc < 0.6) the
largest attraction basin constitutes a significant part of the full phase volume, although the total
number of states remains exponential. We did not find any thermodynamic signatures atx = xc,
and thus believe that only the dynamical behaviour of these glasses changes qualitatively at
this critical point. We note that the singularity is approached as a function of decreasing
x with increasing randomness in the models. Furthermore, the critical point described here
separating polynomially and exponentially small reduced attraction volumes (P = WB/WPH )
as a function of x bears a striking resemblance to that studied recently in K-satisfiability
problems [30].

An important open question is the physical origin of the state with large attraction volume
that appears for 1 > x � xc. At x = 1 its presence is not surprising because there exists only
one stable solution. It seems plausible that this state evolves continuously with decreasing x
and retains its large attraction volume until x = xc; this has been confirmed by complementary
numerical studies. We denote this state by A(x). Metastable states appear at x < 1; at values
of x just slightly below 1 they have energies in a small interval (E∗, Em) separated from EA,
the energy of the state A, by a gap (cf. figure 6) and exponentially small attraction basins.
Thus, A is both the optimal state and the state with the largest attraction basin for x close to 1.
In the limit x → 0, A loses both of these special features, namely it is no longer the ground
state and also has an exponentially small attraction basin. Generically there are three possible
ways in which this can happen, shown schematically in figure 6. Here we sketch the reduced
attraction volume, P = WB/WPH , as a function of x; for x < xc, P becomes exponentially
small. We also show schematically the relative energy,EA−E∗, between that of state A(x) and
the lower edge of the ‘continuous’ spectrum. In scenario 1 (see figure 6), A retains its optimal
status in the vicinity of xc even though it loses its large attraction volume. By contrast in case
3 (cf. figure 6), A loses first its optimal character and then its large basin. Finally in scenario
2 (cf. figure 6) both special features are lost simultaneously; our complementary numerical
studies of the mixed p = 2 and p = 3 disordered spherical models suggest that they are in
this class. Solutions of optimization problems that fall into category 1 (and perhaps category

P

x

E
A
-E

* ρ(E)

EEA E*

xc

NP P

3

2

1

Em

Figure 6. A schematic diagram of the reduced typical attraction volume, P = WB/WPH , and the
relative energy, EA − E∗, as a function of x; the three scenarios for EA − E∗ in the approach to
xc are described in the text.
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2) may be accelerated by noting that the ground state for x < xc is continuously connected to
Ax>xc by tuning the parameter x. In principle one would start by locating A(x) for x > xc,
a relatively easy problem due to its large attraction volume, and then reduce x continuously
to its value of interest (x < xc). This procedure is reminiscent of simulated annealing where
temperature plays a role analogous to that of the tuning parameter x. It may therefore provide
an alternative optimization algorithm for a certain class of NP -problems.
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Appendix A

Here we sketch the derivation of the thermodynamic properties of the mixed p = 2 and
p = 3 spherical spin models in the replica approach. Our main goal is to show that the
low-temperature state is described by the one-step replica-symmetry-breaking solution at all x
such that 0 � x < 1. We follow the standard replica approach developed for p-spin spherical
models [9] with slight modifications implied by the mixed case that we consider here. We
introduce order parameter

Qαβ = 1

N

∑
i

〈
Si,αSi,β

〉
and integrate out the spin degrees of freedom. We get the free energy as a function ofQαβ :

F(Qαβ) = − 1

4T

{
1 − x

3

∑
Q3
αβ +

x

2

∑
Q2
αβ

}
− T

2
Tr lnQ (A.1)

which should be minimized over allQαβ that satisfy the constraintQαα = 1. Varying this free
energy with respect toQαβ we get an expression for the order parameter:

1

4T

{
(1 − x)Q2

αβ + xQαβ
}

+
T

2
Q̂−1
αβ = 0 (A.2)

where Q̂−1 denotes matrix inversion.
In order to solve equation (A.2), we multiply it by theQ-matrix, look for the solution in the

form Q̂ = 1̂ + q̂, and use the Parisi ansatz for the matrix q̂. Next we exploit the structure of the
matrices involved in order to solve the resulting equations in the limit n→ 0, More specifically
we note that two matrices, A and B, that have the block structure of the Parisi ansatz and are
described by the functions A(z) and B(z) in the limit n→ 0 obey the ‘multiplication rule’

(Â B̂)z = −
[∫ z

0
AyBy dy + Az

∫ 1

z

By dy + Bz

∫ 1

z

Ay dy + xAzBz

]
. (A.3)

Using this rule for the matrices Aαβ = (1 − x)q2
αβ + xqαβ (i.e. Az = (1 − x)q2

z + xqz) and
Bαβ = qαβ , we see that for all z �= 1, i.e. for all non-diagonal elements of the corresponding
matrix, equation (A.3) becomes

−(Â B̂)z = (1 − x)q2
z + (1 + x)qz.

Differentiating this equation once with respect to z, we obtain

A′
z

∫ 1

z

By dy + B ′
z

∫ 1

z

Ay dy + z(A′
zBz + AzB

′
z) = [

2(1 − x)qz + (1 + x)
]
q ′
z. (A.4)
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All terms in the preceding equation are proportional to q ′. Assuming that q ′ �= 0 (i.e. that
the solution is smooth), we divide it by q ′ and differentiate it twice with respect to z. We obtain
the equation

q ′

4(1 − x)q + 2x
= − 1

6z(1 − x) (A.5)

that clearly does not allow a solution with positive q and q ′. Thus, we have proved that smooth
solutions with q ′ �= 0 corresponding to continuous replica-symmetry breaking are impossible.
Assuming now a one-step replica-symmetry breaking corresponding to a step-like function qz
at z = z0, we get the free energy

F(q) = +
1

4T

{
1 − x

3
q3 +

x

2
q2

}
+
T

2z0
ln

1 − q
1 − (1 − z0)q

− T
2

ln(1 − q). (A.6)

Numerical inspection of this function indicates that at low temperatures it always has a
maximum for some 0 < z0 < 1 and 0 < q < 1 corresponding to a non-trivial one-step
replica-symmetry-breaking solution.

Appendix B

We now present a skeletal derivation of the number of stable solutions, N (x, e), associated
with the system of equations

λsi = 2
∑
j

Jij sj + 3
∑
jk

Jijksj sk (B.1)

Ne =
∑
ij

Jij sisj +
∑
ijk

Jijksisj sk. (B.2)

and the sum on the spin variables
∑N
i=1 s

2
i = N . Here e is the physical energy per spin of the

metastable states, and can be conveniently represented as a sum

e = 1

3
(λ + ε) (B.3)

where Nε ≡ ∑
ij Jij sisj is the energy contribution from the two-spin model.

In order to compute the number of metastable solutions [31], we use the expression

N (λ, ε, x) =
∫ ∏

i

dsi δ

(∑
i

s2
i −N

)
δ

(
∂H(λ)

∂si

)
det

(
∂H(λ)

∂si ∂sj

)
δ

(
Nε −

∑
ij

Jij sisj

)
(B.4)

where we perform the calculation at T = 0, exploiting the absence of subdivision of states for
T < Tc. The determinant in (B.4) can be calculated by noting that

Aij ≡ ∂H(λ)

∂si ∂sj

is a random symmetric matrix with a semicircular density of eigenvalues distributed in the
interval between λ− µ0 and λ + µ0. We will see later that N (λ, ε) is dominated by λ = µ0;
in this case

D = ln(detAij ) = N

2

(
1 + ln

(2 − x)
2

)
(B.5)

where the x-dependence of the preceding expression arises from disorder averages over the
couplings, 〈J 2

ij 〉 and 〈J 2
ijk〉. Implementing an integral representation of the δ-function, we write

N (λ, ε, x) =
∫ ∏

i

dsi
∏
i

dφi
2π

dµi
2π

eiL+Dδ
(∑

i

s2
i −N

)
(B.6)



6652 P Chandra and L B Ioffe

where the effective Lagrangian is

L = Nµε + λ
∑
i

φisi − µ
∑
ij

siJij sj − 2
∑
ij

Jij sjφi − 3
∑
ijk

Jijksj skφi . (B.7)

We average the couplings over disorder to obtain

L = Nµε + λ
∑
i

φisi +
Ni

4

{
µ2x

2
+

1

N

∑
i

φ2
i +
(2 − x)
N2

(∑
i

φisi

)2

+
2µx

N

∑
i

φisi

}
.

(B.8)

We note that the change of variables �φ → (φ||, φ⊥) where φ|| = φisi/
√
N has been made, so

the effective Lagrangian is no longer a function of si . We can perform the integral over the
spin variables in (B.6) with the result

N (λ, ε, x) =
∫

dµ

2π

dφ||
2π

N−1∏
ν=1

dφν⊥
2π

eiL̃+D̃ (B.9)

where

L̃ = Nµε +
iNxµ2

8
+ λ

√
Nφ|| +

1

4

{
(φ2

|| + φ2
⊥) + (2 − x)φ2

|| + 2µx
√
Nφ||

}
(B.10)

and

D̃ = N

2
{2 + ln π(2 − x)} . (B.11)

Integrating over the remaining variablesµ,φ||, andφ⊥ in (B.9) and using the relation ε = 3e−λ,
we obtain

ln N (λ, e, x) = N

2

{
2 + ln(2 − x)− 2λ2

3 − x − 12(e(x − 3) + λ)2

(3 − x)x(1 − x)
}
. (B.12)

In order to determine the total number of metastable states, we maximize N (λ, x, e) with
respect to λ subject to the constraint that λ > µ0 where

µ0 = 2
√
N〈A2

ij 〉 =
√

2(2 − x) (B.13)

to ensure that all eigenvalues of Aij are positive, so that we are only counting stable states.
We have checked that for 0 < x < 1 the main contribution to N (λ, x, e) comes from λ = µ0.
This implies that at any energy for 0 < x < 1 the majority of the states are marginally stable.
In order to obtain the total number of states, we maximize N (x, e, λ = µ0) with respect to
energy which yields the result (20).
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